The developmental neurobiology unit is headed by Dr. Brigitte Malgrange and the team aimed at studying the molecular mechanisms regulating cell proliferation, differentiation, neuritic outgrowth and apoptosis during the development and regeneration of the inner ear and brain.


Axis 1 Differentiation, protection and regeneration of the auditory portion of the inner ear


The mammalian inner ear is an unusually complex organ consisting of the vestibule, implicated in balance and equilibrium, and the coiled cochlea, containing the auditory machinery necessary for hearing including the organ of Corti, the spiral ganglion and the stria vascularis. Deafness commonly results from a lesion of the sensory cells of the organ of Corti and/or of the neurons of the auditory part of the inner ear and there are currently no treatment designed to halt or reverse the progression of hearing loss. Therefore, our main goal is to better understand how is regulated the development of the cochlea. Indeed, the same molecules that control organogenesis during development are often involved or activated in response to tissue regeneration after trauma, including in the inner ear. In parallel, prevention of the auditory sensory loss has also been investigated.


Hearing loss is a pressing issue of modern world where 10% of the global population is suffering from it. Reparative measures have been developed to cure conductive hearing loss, i.e. hearing loss due to lack of proper conductance of sound wave to the sensorineural system of inner ear. But no cure of perceptive hearing loss, i.e. hearing loss due to degeneration of sensorineural cells, has been developed till date. Thus, it is important to develop a substantial therapeutic measure to prevent and repair the sensorineural degeneration.


Axis 2 Unravelling molecular mechanisms that regulate adult neurogenesis and neuronal death 


Due to increased life expectancies, age-related neurological disorders, including stroke and neurodegenerative diseases, are becoming a major health care problem in developed countries. Since these disorders are characterized by a neuronal loss, an ideal therapeutic approach would combine 1) the prevention or delay of neuronal death and 2) the replacement of the lost neurons by differentiating endogenous or transplanted neural precursor cells (NPCs) into neurons. Toward this purpose, the goal of our research is to better understand the molecular mechanisms that regulates the generation of neurons and neuronal cell death, the first step towards the identification of new molecular targets to improve brain recovery following stroke or neurodegenerative diseases.


IMG 0673